In this article, we introduce a novel neural architecture for the end-to-end Korean Part-of-Speech (POS) tagging problem. To address the problem, we extend the present recurrent neural network-based sequence-to-sequence models to deal with the key challenges in this task: rare word generation and POS tagging. To overcome these issues, Input-Feeding and Copying mechanism are adopted. Although our approach does not require any manual features or preprocessed pattern matching dictionaries, our best single model achieves an F-score of 97.08. This is competitive with the current state-of-the-art model (F-score 98.03), which requires extensive manual feature processing.